

Modeling and Prediction of Accrual PUBLIC IN Multi-Regional Clinical Trials

Yi Deng¹, Xiaoxi Zhang² and Qi Long¹

¹Department of Biostatistics and Bioinformatics, Emory University; ²Pfizer Inc.

Introduction

- In multi-regional trials, the underlying overall and region-specific accrual rates often do not hold constant over time. Also, different regions could have different start-up times, which combined with initial jump in accrual within each region often leads to a discontinuous overall accrual rate. These issues associated with multi-regional trials have not been adequately investigated.
- We clarify the implication of the multi-regional nature on modeling and prediction of accrual in clinical trials and investigate a Bayesian approach for accrual modeling and prediction. This approach models region-specific accrual using a nonhomogeneous Poisson process (NHPP) and allows the underlying Poisson rate in each region to vary over time. The proposed approach can accommodate staggered start-up times and different start-up accrual rates across regions/centers.
- Our numerical studies show that the proposed method improves accuracy and precision of accrual prediction compared to an existing NHPP model that does not model region-specific accrual.

Methods

$$\Pr(\mathbf{N} = \mathbf{n} | \boldsymbol{\lambda}) = \prod_{j=1}^{J} \prod_{t=1}^{T} \frac{e^{-\lambda_{jt}} \lambda_{jt}^{n_{jt}}}{n_{jt}!} \xrightarrow{j: \text{ index of regions;}} t: \text{ index of time;} \\ N_{jt}: \text{ the number of patients enrolled in region } j \text{ on } \\ \text{day } t, \text{ denote its realization in the current trial by } n_{jt} \\ \lambda_{jt}: \text{ the underlying Poisson rate of region } j \text{ at time } t. \\ \phi(\cdot): \text{ the B-spline basis function.} \\ \lambda_{jt} = \beta_j^T \phi((t-t_j^0)_+) \qquad \qquad \begin{cases} t_j^0: \text{ the start-up time for region } j. \\ \beta_j: \text{ the B-spline coefficients for region } j. \\ \beta_j: \text{ the assume } \beta_j \sim MVN(\boldsymbol{\nu}, \boldsymbol{\Gamma}) \end{cases}$$

$$f(\boldsymbol{\beta}|\boldsymbol{\nu}, \boldsymbol{\Gamma}) \propto \prod_{j=1}^{J} |\boldsymbol{\Gamma}|^{-\frac{J}{2}} \exp\left\{ -.5 \sum_{j=1}^{J} (\beta_j - \boldsymbol{\nu})^T \boldsymbol{\Gamma}^{-1} (\beta_j - \boldsymbol{\nu}) \right\}$$

Simulation Results

Table 1: Comparison of root mean squared errors (rMSPE), mean coverage rates (CR), and mean width of the 95% posterior CI (\bar{w}) of the proposed method (NHPPM) and the original NHPP method (NHPPS), as well as the probability of the proposed method having tighter 95% CI than NHPPS (Prob.), i.e., $Pr(w_1 > w_2)$, based on 1000 simulated trials with J = 2, 5 or 30 regions, when participating regions have different start-up times.

		<u> </u>						
		Set	tings	Summary Measures				
d_{j}	ρ	pct.	Method	\mathbf{rMSPE}	CR	w	Prob.	
			NHPPS	8.71	0.99	49.44		
		0.4	NHPPM, $J=2$	7.72	0.94	29.15	1.00	
	0.1		NHPPM, $J=5$	5.02	0.98	22.27	1.00	
			NHPPM, $J=30$	3.84	0.97	15.73	1.00	
			NHPPS	4.74	0.99	23.68		
		0.7	NHPPM, $J=2$	3.28	0.99	15.54	1.00	
			NHPPM, $J=5$	2.78	0.98	12.68	1.00	
0			NHPPM, $J=30$	2.58	0.97	10.44	1.00	
			NHPPS	17.97	0.96	74.88		
		0.4	NHPPM, $J=2$	11.69	0.96	49.91	0.99	
			NHPPM, $J=5$	9.41	0.96	38.24	1.00	
	0.3		NHPPM, $J=30$	5.55	0.99	23.70	1.00	
			NHPPS	8.12	0.95	32.34		
		0.7	NHPPM, $J=2$	5.27	0.98	24.00	0.98	
			NHPPM, $J=5$	3.84	0.99	18.34	1.00	
			NHPPM, $J=30$	2.81	0.99	12.94	1.00	
		0.4	NHPPS	8.53	1.00	50.80		
0.5			NHPPM, $J=2$	6.80	0.98	34.11	1.00	
			NHPPM, $J=5$	4.47	0.99	23.39	1.00	
	0.1		NHPPM, $J=30$	3.90	0.97	15.74	1.00	
			NHPPS	4.45	1.00	24.19		
		0.7	NHPPM, $J=2$	3.28	1.00	17.41	1.00	
			NHPPM, $J=5$	2.84	0.99	13.21	1.00	
			NHPPM, $J=30$	2.59	0.97	10.47	1.00	
			NHPPS	18.73	0.96	80.27		
		0.4	NHPPM, $J=2$	13.37	0.97	59.99	0.98	
	0.3		NHPPM, $J=5$	9.61	0.98	42.67	1.00	
			NHPPM, $J=30$	5.68	0.99	24.49	1.00	
			NHPPS	7.92	0.97	33.99		
		0.7	NHPPM, $J=2$	5.78	0.98	26.76	0.97	
			NHPPM, $J=5$	4.23	0.98	19.86	1.00	
			NHPPM, J=30	2.78	0.99	13.25	1.00	

Data Example

- Cancer trial: randomized Phase 3 study of adjuvant treatments of colorectal cancer.
- Subjects: a total of 1794 Stage 3 patients were planned to be enrolled from 32 countries.
- We conduct a retrospective enrollment prediction at two interim looks with 40% and 70% of patients enrolled and consider grouping all countries into two and three regions as well.
- Task: predicting the time when at least a total of 1794 patients are enrolled across all regions.

Data Analysis Results

Table : Data Example: 95% posterior CIs of the predicted accrual duration (τ) and $w = T_U - T_L$ which is the width of the 95% posterior CI, using the proposed method (NHPPM) versus the original NHPP method (NHPPS).

Real data		NHPPS		NHPPM					
				Two regions		Three regions		Thirty-two regions	
$\mathbf{c}\mathbf{v}$	pct.	CI	w	CI	w	CI	w	CI	\overline{w}
0.1	40%	[594, 660]*	66	[547, 587]	40	[550, 584]	34	[552,578]	26
	70%	[578, 611]*	33	[552, 574]	22	[552, 570]	18	[552, 568]*	16
0.3	40%	[533, 593]	60	[528, 585]	57	[526, 583]	57	[570,609]	39
	70%	[553, 589]	36	[549, 581]	32	[546, 576]	30	[559, 580]	21
0.5	40%	[525, 594]	69	[522, 582]	60	[518, 567]*	49	[581,628]*	47
	70%	[548, 591]	43	[552, 587]	35	[549, 579]	30	[560, 586]	26

*: denotes the 95% posterior CI does not cover the true value ($\tau = 570$).

Conclusions

- The proposed approach accommodates different start-up times and accrual rates across regions/centers and allows for discontinuity in the overall accrual rate, compared to the existing methods
- In numerical studies, the proposed method is shown to improve precision of accrual prediction compared to the NHPPS approach that does not model region-specific accrual rates. In practice, this translates into improved accuracy and precision and hence improved decision making on resource allocation.
- The flexible B-spline model for region-specific accrual rates provides good prediction in the simulation studies as well as the real data example.
- The proposed method would allow a research team to identify potential enrollment problems with certain regions using prediction results from individual regions and enable the research team to use a more targeted approach, such as addressing detected deficiency in recruitment in certain regions or adding satellite regions to increase enrollment.

References

- [1] Deng, Y., Zhang, X. and Long, Q., (2014) Bayesian modeling and prediction of patient accrual in multi-regional clinical trials.

 Statistical Methods in Medical Research, in press.
- [2] Zhang X, Long Q. Stochastic modeling and prediction for accrual in clinical trials. Statistics in Medicine, 2010, 29(6): 649-658.